0\ \ \ \Rightarrow\ \ \ cos \alpha = \frac{ \sqrt{17} }{9} \\\\"> sin^2 \alpha +cos^2 \alpha =1\ \ \ and\ \ \ tan \alpha = \frac{\big{sin \alpha }}{\big{cos \alpha }} \\\\sin \alpha = \frac{8}{9}\\\\ \Rightarrow\ \ \ (\frac{8}{9})^2+cos^2 \alpha =1\ \ \ \Rightarrow\ \ \ cos^2 \alpha =1- \frac{64}{81} \ \ \ \Rightarrow\ \ \ cos^2 \alpha = \frac{17}{81} \\\\ \alpha \ \in\ (0^0;90^0)\ \ \ \Rightarrow\ \ \ cos \alpha >0\ \ \ \Rightarrow\ \ \ cos \alpha = \frac{ \sqrt{17} }{9} \\\\
t an α = 9 8 : 9 17 = 9 8 ⋅ 17 9 = 17 8 = 17 ⋅ 17 8 ⋅ 17 = 17 8 ⋅ 17
The values are cos Θ = 9 17 and tan Θ = 17 8 17 .
;